Содержание
С полётов «Аполлонов» к Луне прошло уже больше полувека, но человечеству так и не удалось повторить тот результат, хотя сейчас мы, вероятно, ближе всего к этому за прошедшее время. Но так ли ценен возврат на Луну? Нет ли у нас другой, более важной цели? С существующими технологиями человек может достигнуть поверхности двух тел Солнечной системы: Луны и Марса. И сегодня я постараюсь сравнить преимущества и недостатки от полёта человека на эти небесных тела.
Введение
Начать, пожалуй, стоит с ответа на вопрос: «зачем вообще куда-нибудь лететь, если на Земле не решены все проблемы?» Хотя чаще всего этот вопрос встречается именно в таком формате, но в таком виде он просто лишён всякого смысла. Ведь, во-первых, космонавтика в том числе и используется для решения множества земных проблем от предсказания погоды и навигации, до телевещания и обеспечения связи в удалённых регионах. А, во-вторых, как это обстоит и с любой научной сферой, мы не можем точно предсказать долгосрочной выгоды от инвестиций в космонавтику. Что ни сколь не оправдывает отказа от инвестиций в неё и науку в целом. И тем не менее некоторую потенциальную пользу от освоения того или иного небесного тела мы можем назвать уже сейчас, с чего бы я и предложил начать сравнение. Потенциал от пилотируемых исследований Луны и Марса можно разбить на 4 основных направления: научные исследования, использование местных ресурсов, технический прогресс и вдохновение людей.
Научные исследования
Космонавтика стала причиной появления множества технологий, используемых сейчас на Земле.
В плане геологических исследований Марс является намного более перспективным объектом, так как активные геологические процессы там шли в разы дольше чем на Луне. А по последним данным, они продолжаются даже сейчас (против оценки в «менее 50 млн лет» для подобной активности на Луне). В тоже время с нашего естественного спутника уже было доставлено около 384 кг образцов из десятка интересовавших учёных мест, причём часть из них была надолго законсервирована и продолжает распаковываться до сих пор. С Марса же пока не было доставлено никаких образцов, и по текущем планам Китая и США это должно случиться лишь в 2030/2031 годах.
Отчасти задача геологических исследований уже решается марсоходами, но в этом плане остаётся другая ещё более интересующая учёных и даже широкую общественность задача — поиск внеземной жизни. Об отсутствии жизни на Луне в настоящем времени стало понятно к полёту «Аполлона-15», для которого уже не применяли послеполётного карантина. Шансы обнаружить жизнь на Марсе в настоящем тоже невелики, но они сохраняются. Кроме того, там намного большие шансы обнаружить признаки существовавшей жизни в прошлом, в связи с тем, что жидкая вода на Марсе существовала больше того времени, которое потребовалось для зарождения жизни на Земле. А условия для существования жизни под поверхностью Марса продолжают сохраняться и сейчас, что оставляет больше шансов обнаружить её в почти не повреждённом состоянии.
Причём даже планируемые сейчас к доставке на Землю образцы с Марса будут всё ещё бесполезны для прямых поисков жизни, как пока и не способны заниматься ими датчики существующих марсоходов. На современном уровне автоматизации серьёзно заниматься поисками следов жизни способны только люди. И с учётом того, что люди гораздо охотнее выделяют средства на проекты в которых задействованы другие люди (для сравнения достаточно посмотреть на порядок отличающиеся расходы на программы «Аполлон»/МКС и телескопы «Хаббл»/«Джеймс Уэбб») то, на мой взгляд, поиски жизни на Марсе имеют наибольшие шансы получить достаточное финансирование и поддержку в обществе, для того чтобы человечество смогло сделать следующий крупный шаг в освоении космоса.
Следующее интересное и жизненно важное для нас направление исследований — изучение планетарного климата и влияния на него внешних факторов, подобных человеку. В этом плане для нас наиболее интересны Венера и Марс, но последний привлекателен ещё и тем, что на нём можно без гигантских затрат провести «натурный эксперимент» по глобальному изменению климата. Исследования климата имеют огромный потенциал по снижению расходов здесь, на Земле, так как лучше понимание лимитов выбросов парниковых газов и способов влияния на климат позволит тратить меньше средств на борьбу с изменениями земного климата.
Другое важное направление, о котором всегда забывают, является проведение экспериментов в невесомости. Обычно в книгах и фильмах участников экспедиции к Марсу изображают скучающими всё время перелёта в ожидании высадки, а после завершения операций на планете и взлёта — столько же бесплодно ждущими возврата обратно. Однако добавив не так уж и много научного оборудования и расходных материалов к тому что уже будет на борту корабля для работы на «красной планете», экипажи марсианских экспедиций смогут проводить почти полный спектр экспериментов, которые сейчас идут на МКС. Полёт же к Луне занимает только около 3 дней, чего недостаточно для проведения значительной доли от подобных экспериментов. Кроме того, лунные корабли просто не предусматривают доставки вместе с космонавтами такого же большого объёма полезного груза, которые планируются для марсианских.
Использование ресурсов
Гелий-3 давно прочат в главный ресурс для решения земных энергетических проблем, а лунную воду в роли водород-кислородного топлива — в решение проблемы освоения человечеством Солнечной системы. Но возможно ли это в реальности?
Добывать лунный гелий-3 впервые предложили 35 лет назад и с тех пор создают под эту цель технологические проекты различной степени проработанности. Однако ни один из них так и не вышел из стадии бумажного концепта. И для этого есть вполне прозаичная причина: даже если бы сейчас перед нами лежали безграничные запасы бережно упакованного гелия-3, мы не смогли бы получить из него ни капли энергии. Ведь сейчас у нас в наличии есть только испытательный реактор — ИТЭР — 1-го поколения, способный вырабатывать энергию из самой «простой» термоядерной реакции дейтерия с тритием. На основе него планируется построить коммерческий реактор DEMO на той же реакции не ранее середины этого века. А для зажигания же реакции с участием гелия-3 требуются на порядок более сложно достижимые условия. И ждать их достижения, вероятно, придётся ещё несколько десятилетий сверх того.
А тем временем возобновляемые источники энергии уже вышли в 2019 году на выработку 26% от всей электроэнергии на планете и вскоре могут сделать не актуальной проблему исчерпания ископаемого топлива на Земле. Так что к тому моменту, когда сможет быть налажено серийное производство коммерческих термоядерных реакторов 2-го поколения, нужда в них может отпасть в принципе. В то же время марсианская вода содержит в 5 раз больше дейтерия чем земная. А для получения метан-кислородного топлива придётся проводить электролиз больших объёмов воды, что и является основной расходной статьёй при получении дейтерия на Земле. Таким образом для земной энергетики Марс имеет все шансы стать полезным гораздо раньше Луны, в то время как наша соседка рискует оказаться вовсе бесполезной.
По использованию лунной воды в качестве топлива существует 2 сценария: с заправкой топливом на низкой орбите Луны или Земли.
I) Для выхода на лунную орбиту требуется иметь запас характеристической скорости в 4 км/с, а для отправления к Марсу — 3,5-4 км/с (в зависимости от дня старта и взаимоположения Земли и Марса в этом стартовом окне) и ещё примерно 0,5 км/с требуется для пилотируемых полётов (сокращения времени перелёта с 9 до 6 месяцев). Таким образом для освоения Марса Луна попросту бесполезна, а других целей для полномасштабного освоения у нас на ближайшее время не предвидится.
II) Для полёта с поверхности Луны на низкую земную орбиту требуется иметь запас характеристической скорости (delta-V) в размере 5,9 км/с, и столько же нужно для возврата обратно. Возьмём для примера характеристики водород-кислородного разгонного блока «Центавр»: его сухая масса — 2,03 тонны, полная — 22,83 тонн, удельный импульс двигателя — 450,5 секунд. Подставив эти цифры в формулу Циолковского мы получим, что «Центавру» просто не удастся долететь с поверхности Луны до Земли и вернуться на Луну обратно. Выходом из этой проблемы может быть использование на танкере электроракетных двигателей для полётов между орбитами или использование 2-х типов танкеров (курсирующих между поверхностью Луны/её орбитой и курсирующих между орбитами Луны/Земли). 1-й вариант плох тем, что будет требовать постоянного снабжения танкеров топливом для электроракетных двигателей с Земли (так как на Луне благородные газы фактически не встречаются), а 2-й вариант плох тем, что удваивает число танкеров и заправок, что увеличивает накладные расходы и снижает общую надёжность системы.
Кроме того, при танкерах, создаваемых на современных технологиях, на каждую тонну полезного топлива в 1-м варианте впустую на перелёты у нас будет уходить около 10 тонн, а при 2-м варианте — 3 тонны лунного топлива и 300 кг благородных газов с Земли. Использование аэроторможения о земную атмосферу может улучшить характеристики обоих вариантов, но не сможет кардинально изменить ситуацию, так как необходимость наличия при этом теплового щита «съест» значительную часть от этой выгоды. Также в сравнении с «Центавром» мы не учитывали, что танкер должен будет иметь посадочные опоры и систему охлаждения топлива (термостатирования), либо вместо неё нам в расчёты придётся добавить расходы топлива на выкипание в процессе перелётов.
При этом нам также необходимо учитывать то, что текущие разведанные объёмы лунного водяного льда составляют 600 млн тонн, расположенных в ближайших метрах от поверхности, но разбросанных в разных кратерах в радиусе около 300 км вокруг лунных полюсов. Можно с уверенностью предполагать, что запасы воды в глубинах Луны в несколько раз больше этого. Но необходимо также учитывать, что не всё даже из уже разведанного запаса легкодоступно или просто пригодно для промышленной добычи. И если мы планируем использовать Луну в качестве банальной «бензоколонки», да ещё и с таким низким КПД — мы рискуем быстро исчерпать эти запасы, сделав дальнейшее освоение Луны практически бессмысленным занятием.
Технический прогресс
Условия на Марсе намного более схожи с земными, что оставляет больше шансов на применение испытанных там технологий в дальнейшем на Земле. Так, например, технология добычи воды из атмосферы Марса имеет все шансы оказаться применимой в пустынях и засушливых регионах Земли, с минимальными доработками. В то время как технология добычи лунного льда в условиях вакуума и почти абсолютного температурного нуля не выглядит для землян сколь-либо полезной. Кроме того, крупная колония на Марсе может стать серьёзным стимулом для развития таких технологий, как ядерные и термоядерные ракетные двигатели, которые могут использоваться не только для сокращения времени перелёта туда вплоть до недель, но и позволить доставлять грузы на Марс в любое время года. Для освоения же Луны с её стабильным 3-дневным перелётом в одну сторону, такого запроса попросту не возникнет.
Вдохновение людей
Хотя на Эвересте побывали уже тысячи человек, это, однако, ни сколь не мешает людям платить по около $50 тыс. за восхождение туда и ежегодно погибать при этом (кстати, сделанная Илоном Маском оценка нижней планки стоимости полёта на Марс составляет всего в 2-4 раза больше этого, а соответствующий риск гибели в районе 1% может быть обеспечен даже в первых полётах). Но людей тем не менее намного больше вдохновляют исследования тех мест, на которые ещё не ступала нога человека. И хотя на полюсах Луны не высаживались пока даже беспилотные аппараты, Марс намного лучше подходит на эту роль. Кроме того, на Марсе людей ожидают гораздо более разнообразные пейзажи, за исследованиями которых будет интереснее наблюдать.
Расход топлива для перелёта
Первая проблема, которую нужно решить при освоении любого небесного тела — доставка на него грузов. Даже если в перспективе мы планируем максимально использовать местные ресурсы, для начала мы должны доставить большой объём оборудования для их добычи. И если весь путь до поверхности Луны необходимо проводить за счёт расходов ракетного топлива, на что требуется дельта в 5,9 км/с, то в случае с Марсом нам нужно 3,5-4 км/с для отправления туда и 0,9-1,15 км/с плюс тепловой щит для посадки. В зависимости от конструкции корабля вес щита ± покрывает «лишние» лунные 0,75-1,5 км/с.
Однако если беспилотные миссии практически не требуют затрат во время перелётов, то с пилотируемыми всё обстоит гораздо сложнее. Человеку требуется постоянное снабжение кислородом, водой и едой, так же, как и определённое жилое пространство и защита от радиации. Согласно расчётам РКК «Энергия», каждому члену экипажа требуется около 10 кг припасов в сутки при открытой системе жизнеобеспечения и 2 кг при частично-закрытой (при этом сами такие системы весят по 10 и 100 кг на человека соответственно). С учётом времени перелёта, это оборачивается расходами массы в 80 кг/чел в случае Луны и 820 кг/чел для Марса. Кроме того, по оценкам NASA при полёте к Луне достаточно объёма корабля в 3,5 м3 на человека, в то время как для Марса нужно почти 10 м3. С учётом того что лунный возвратный корабль требует 45 кг массы на каждый кубометр объёма против почти 216 кг у марсианского (так как предсказывать солнечные вспышки на 3 дня вперёд космонавтика уже научилась, а вот марсианскому кораблю без защиты от них никак не обойтись) то масса перелётных кораблей получится равной 160/2136 кг в случае Луны/Марса соответственно.
Однако в этом сравнении для Марса не всё так безнадёжно, как могло бы показаться на первый взгляд! Во-первых, указанная выше масса припасов прекрасно может подойти на роль радиационной защиты, оставаясь при этом пригодной для употребления. Во-вторых, на эту роль также подходит и научное оборудование и по крайней мере часть из образцов для экспериментов. Ну и в-третьих, не вся площадь корабля обязательно должна иметь радиационную защиту. А если мы ограничимся средней массой конструкции на уровне модулей МКС (имеющих массу около 67 кг на 1 м3), то масса марсианского корабля составит уже только 670 кг/чел. Таким образом суммарно у нас выходит 80+160=240 кг/чел для полёта к Луне и 820+670=1490 кг/чел для Марса. Всё ещё очень много, но нам нужно ещё учитывать следующий пункт.
Радиация на поверхности
Марсианская атмосфера составляет меньше 1% от земной и кажется бесполезной для создания какой-либо защиты. Однако это не так. Её толщина составляет 16-21 г/см2 в зените и до более чем 100 г/см2 у горизонта, что намного больше защиты в 10-15 г/см2 у модулей МКС. Луна же будет защищать космонавтов от космической радиации только в нижней полусфере, также как это будет на Марсе и происходит сейчас на МКС, благодаря её низкой орбите. Из-за этого получаемая на поверхности Луны без защиты доза может достигать 840 мЗв/год во время солнечного минимума (худший сценарий) и будет составлять в среднем около 500 мЗв/год под защитой сопоставимой с модулями МКС. Это гораздо больше получаемых космонавтами на МКС 160-320 мЗв/год (во время солнечного максимума/минимума соответственно) и измеренных марсоходом Кьюриосити 234 мЗв/год (без защиты, но во время солнечного максимума).
Таким образом единственным преимуществом Луны в плане радиации оказывается то, что в случае создания постоянной базы её радиационная защита сможет быть использована повторно. Но при высадках по типу «Аполлонов» её всё равно придётся тащить с собой каждый раз. Просто обойтись без неё никак не получится, так как в таком случае любая солнечная вспышка в направлении Луны будет вынуждать экстренно прерывать лунные миссии. К тому же из-за весьма низкой защиты скафандров от радиации выход с Лунной базы во время вспышек для космонавтов будет недоступен (что необходимо учитывать при расчётах надёжности её оборудования), в то время как на Марсе это будет нежелательным лишь в полуденные часы.
На среднюю и дальнюю перспективу лунные и марсианские базы будет разумным защищать при помощи местного грунта. И здесь небольшое преимущество оказывается за Марсом, благодаря тому что его более насыщенная водою почва позволяет обходиться в 1,5-2 раза меньшим (по массе) слоем грунта для обеспечения такого же уровня защиты.
Микрометеоритная опасность
Согласно оценкам, за год на Луну выпадает около 25 млн микрометеоритов с общей массой 1800 тонн, пиком массы около 15 микрограмм и средней скоростью в 13,3 км/с (по этим оценкам на площадь в 150 м2 приходится по удару микрометеорита с диаметром 0,5 мм раз в год). Среди них также встречается и >6,4 тыс. более крупных объектов (удары которых способен различить телескоп с разрешением 0,5 м) и >27 крупных объектов, оставляющих кратеры с диаметром 3-43 метра. Марс же имеет достаточно плотную атмосферу, чтобы полностью защитить от объектов с массой от 10 грамм до 1 тонны (в зависимости от скорости и угла входа их в атмосферу). И так как скафандры способны защитить только от объектов менее 1 грамма массы, микрометеоритная защита (составлявшая в скафандре программы «Аполлон» целых 13 слоёв) на Марсе будут попросту не нужна. По данным обсерватории MRO, на Марс выпадает только 200 метеоритов и комет за год, что близко к показателям Земли, на которую выпадает порядка 500 штук метеоритов за год (при в 3,5 раза большей площади поверхности).
Таким образом марсианский транспорт и даже не жизненно важная инфраструктура и здания могут обходиться без метеоритной защиты, в то время как на Луне её должно иметь практически всё, включая скафандры.
Окружающая среда
Температурные перепады по данным посадочного аппарата «Викинга-1».
Лунное притяжение составляет 16,5% от земного, в то время как на Марсе это 37,9%. Температура на полюсах Луны варьируются от -250°C до +120°C, что гораздо больше марсианских перепадов от -110°C до +35°C в умеренных широтах (куда планируется доставлять людей). Марс, в свою очередь, знаменит своими пылевыми бурями, которые могут длиться многими неделями, снижая производительность солнечных батарей и понижая максимальную температуру на поверхности (но при этом и повышая минимальную, оставляя среднюю дневную температуру почти неизменной). На самом деле пыль на Луне также присутствует благодаря электростатическим силам, но её объёмы значительно меньше марсианских, хотя при этом она намного более абразивна, чем и опасна для движущихся деталей техники и человеческих лёгких. Также на Луне полностью отсутствует магнитное поле (которое по некоторым предположениям требуется для поддержания здоровья человека), в то время как на Марсе существуют его слабые очаги. Лунный день длится 29,53 земных дня, в то время как для Марса это 1,026 суток.
Производство энергии
Первую проблему, которую нужно будет решать, добравшись до небесного тела, будет получение тепла и электричества. Энергия требуется практически для любых операций, и от степени её доступности будет зависеть то, сколь энергоёмкие процессы получения других ресурсов нам будут доступны. В зависимости от времени года поверхность Луны достигает 1322-1414 Вт/м2 против 493-716 Вт/м2 в случае с Марсом. С учётом ещё и наличия на Луне «пиков вечного света», кажется что у нас есть победитель в этом «сравнении»? На самом деле далеко ещё нет, ведь из-за наклонения оси вращения Луны на 5,15º лучший из подобных пиков ежемесячно оказывается в тени на не менее чем 24 часа. И с учётом того, что солнечные батареи сравниваются по массе с буферными электрическими уже примерно после 1 часа работы, для систем требующих непрерывного снабжения электричеством масса самих солнечных батарей перестаёт иметь какое-либо значение, а преимущество Марса перед Луной оказывается двукратным.
Обойти эту проблему можно было бы либо разместив солнечные батареи на разных склонах кратеров и соединив их многокилометровыми кабелями с базой, либо подняв солнечные батареи выше уровня тени (а по оценкам в местах с залежами воды это около 800 метров). Оба варианта требуют огромных инвестиций учитывая то, что микрометеоритная опасность и перепады температур вынуждают закапывать лунные линии электропередач в грунт, а вышки строить с большим дублированием опор и перекладин (либо навешивать на них микрометеоритную защиту, что растрачивает значительную долю от преимущества низкой гравитации Луны).
Проблему марсианской пыли, в свою очередь, гораздо проще решить, так как даже без разработки системы электростатического отталкивания пыли (которая пригодится и на Луне) эту проблему можно решить «в лоб» — 3-кратным увеличением солнечных батарей в размерах. Это кажется большим недостатком, но при сравнении часть от него «съест» необходимость закладывать для лунных солнечных батарей запас на деградацию под действием повышенной радиации и механических повреждений микрометеоритами.
Производительность солнечных батарей марсохода «Оппортьюнити» за 8-й — 12-й годы его пребывания на Марсе: с изначального уровня около 900 Вт*ч она никогда серьёзно не опускалась ниже 30%.
В плане использования ядерной энергии в обоих случаях реакторы будут иметь почти одинаковую массу, так как их прочностные характеристики будут определяться не местной гравитацией, а необходимостью пережить перегрузки при старте с Земли, с которой они будут экспортироваться в обозримом будущем.
Получение топлива
Самый большой по массе ресурс, который космонавтам придётся добывать в ближайшей перспективе — это топливо для отправления кораблей обратно на Землю. В связи с отсутствием легкодоступного углерода на Луне, основным вариантом топлива для неё рассматривается кислород-водородное, в то время как для Марса наиболее перспективным выглядит кислород-метановая смесь. В обоих случаях используется реакция электролиза воды (2H2O → 2H2 + O2) потребляющая 4,41 кВт*ч/кг, в то время как для получения метана также используется реакция Сабатье (CO2 + 4H2 → CH4 + 2H2O) идущая с выделением энергии. Для водород-кислорода оптимальным соотношением топлива и окислителя является 1 к 4, в то время как вода содержит 1/9 массовую часть водорода и 8/9 кислорода. В результате этого в «лишний» кислород уходит 4/9=44,4% массы, в то время как полезное топливо составляет 5/9=55,6% от массы электролизуемой воды. Расход электроэнергии при этом составляет 7,94 кВт*ч на 1 кг получаемого топлива.
Для метан-кислорода же оптимальным является соотношение 1 к 3,2, в то время как после прохождения через электролиз и реакцию Сабатье соотношение метана к кислороду оказывается 1 к 4. Так что и здесь у нас образуется большой избыток кислорода, который может покрывать все потребности систем жизнеобеспечения базы в кислороде. При этом благодаря добавлению в реакцию углекислого газа выход топлива получается равным 187% от массы расходуемой в реакциях воды — в 3,36 раза лучше лунного показателя. Расход электроэнергии при этом составляют 4,73 кВт*ч/кг или в 1,68 раза лучше Луны. Кроме этого водород необходимо хранить при температуре ниже -253°C (и даже так он остаётся менее плотным), в то время как метану требуется -162°C, а кислороду достаточно -90°C. Поэтому для водорода требуются намного более сложные и дорогие многоступенчатые системы охлаждения, большие баки и более толстая теплоизоляция.
Тем не менее водород-кислородное топливо даёт на 23,4% больший удельный импульс, нежели водород-метановое. Это позволяет расходовать меньше топлива на набор той же скорости и оправдывает применение водорода при необходимости набора очень больших значений delta-V. Однако даже если мы учтём, что вторая космическая скорость для Луны/Марса составляет 2,38/5,03 км/с, масса топлива для их набора составит соответственно 41,4/75,1% — достаточно чтобы покрыть разницу в расходах на электролиз, но недостаточно для покрытия больших расходов на добычу воды на Луне. Вкупе с тем, что атмосфера Марса содержит большое количество аргона, пригодного для использования в электроракетных двигателях (имеющих импульс в несколько раз больше водород-кислорода) у Луны фактически не оказывается преимуществ перед Марсом в роли «заправочной станции». Но при этом Луна серьёзно проигрывает по разнообразию типов топлива и способов его добычи.
Вода и газы для атмосферы базы
Небесное тело | Земля | Марс | Луна |
---|---|---|---|
Содержание воды у экватора | 1-100% | 2-7% | 0,01-0,14% |
Содержание воды на полюсах | ≈100% | до 70% | 6% |
Общий запас разведанной воды, тонн | 1,3*1018 | 4,6*1015 | 6*106 |
Слой которым ей можно покрыть поверхность | 2,6 км | 35 м | 0,015 мм |
Как показывают орбитальные наблюдения, концентрация воды в местах потенциальных высадок людей на Марсе может превосходить лунные показатели в 2-3 раза. А так как расходы рабочего времени космонавтов на земляные работы и расходы энергии на выпаривание воды из грунта почти прямо пропорциональны её массе, на добычу воды на Луне будет уходить примерно в 2 раза больше ресурсов. Однако больший расход энергии может быть в какой-то степени компенсирован при использовании зеркальных концентраторов света, которые на Луне будут легче по массе и смогут работать всё светлое время суток, в то время как на Марсе они не смогут работать во время пылевых бурь. В свою очередь атмосфера Марса содержит воду в концентрации 210 ppm (частей на миллион) что можно использовать в качестве резервного источника водя для систем жизнеобеспечения. По данным посадочной платформы «Викинга-2», такой способ обойдётся в 17 кВт*ч энергии на получение 1 кг воды.
По оценкам NASA, при каждом выходе космонавтов на поверхность расходуется около 1,2 кг газов на шлюзование в 2-местном шлюзе (с учётом потерь при возврате, столько уйдёт на каждого космонавта за раз), а также 0,09 кг/час кислорода на дыхание и 0,34 кг/час воды для системы терморегулирования (также на каждого). Кроме этого, на утечки из жилых отсеков будет тратиться ещё примерно 0,15 кг/сутки газов. Получение кислорода для нас не вызывает никаких проблем, так как кроме производства топлива его можно получать из лунного реголита (который содержит его в количестве >40%), а на Марсе его также можно добывать из атмосферного углекислого газа и NASA уже опробовало эту технологию в «боевых условиях».
Но если мы планируем использовать на Луне атмосферу схожую с МКС, то это обернётся для нас потерями азота в количестве около 1,5 кг в сутки. Что является серьёзной проблемой, так как лунный реголит настолько беден соединениями азота, что в тонне грунта его встречается лишь около 40-120 грамм. Атмосфера же Марса содержит 1,9% азота, так что его получение там не составляет большого труда.
Выращивание еды
Прототип надувной теплицы с биорегенеративной системой жизнеобеспечения от Университета Аризоны.
Симулянт марсианского грунта в исследованиях показывает лучшие результаты роста растений чем грунт со дна земной реки, в то время как лунный симулянт даёт худшие показатели. Кроме того, солнечные сутки длиною в месяц и отсутствие у лунных прозрачных куполов способности обеспечить достаточную защиту для растений от солнечных вспышек, оставляет лунную базу с единственным вариантом выращивания еды при искусственном освещении (которое обходится в целых 100-625 кВт*ч энергии на выращивание 1 кг биомассы, из которой значительная доля приходится на непригодную для еду ботву). Отсутствие на Луне азота также означает, что требуемые на 1 космонавта в год 90-100 кг удобрений придётся экспортировать на Луну с Земли (хотя переработка ботвы может позволить сократить эти расходы).
На Марсе же, в свою очередь, существует проблема повышенной концентрации перхлоратов в грунте, которая, однако, довольно легко решается выращиванием 1-го урожая особых растений, которые «всасывают» их избыток в себя и затем выбрасываются.
Радиосвязь
Почти половина лунной поверхности постоянно видна с поверхности Земли. Однако это не относится к лунным полюсам, гористая структура которых периодически оказывается невидна из-за лунных либраций. Таким образом, если мы хотим обеспечить экипажи исследующие лунные полюса постоянной и надёжной связью с Землёй и Лунной базой, нам придётся запускать по крайней мере 6 спутников связи на высокоэллиптическую лунную орбиту. На Марсе же, с другой стороны, база должна располагаться достаточно близко к экватору, чтобы одним геостационарным спутником покрыть все нужды связи космонавтов с базой, а их парой — нужды по связи базы с Землёй. Кроме того, на Марсе в качестве резервной системы можно использовать длинноволновую связь, основанную на отражении сигнала от ионосферы планеты, которой Луна попросту не имеет.
Космических туризм
В плане туризма Луна, с её 3-дневным перелётом в одну сторону, смотрится намного привлекательнее Марса, перелёт к которому в лучшем случае будет занимать более 3 месяцев. Однако за 20 лет существования космического туризма на МКС побывало лишь 7 туристов, а за 17 лет предложений облёта Луны РКК «Энергия» так и не нашла достаточного количества желающих, для того чтобы оправдать расходы на создание лунной версии «Союза». С освобождением мест в российских кораблях от астронавтов NASA и началом полётов Crew Dragon нас может ожидать своеобразный «ренессанс» в этой области.
Но он объясняется десятилетним отсутствием предложения на этом рынке и не может быть обоснованием для определения перспектив космического туризма, пока спустя пару лет мы не увидим поведения спроса в стабильных условиях. Скорее всего он окажется меньше, но даже при текущих показателях около десятка туристов в год при цене около $50 млн за билет не может покрыть сколь-либо значительную долю от общих расходов на создание лунной или марсианской базы (правды ради эти $0,5 млрд в год выглядят несерьёзными даже для поддержания работы МКС, на что уходит порядка $6 млрд).
Заключение
Как было показано выше, Луна проигрывает Марсу по большинству параметров. И манящая простота доступа туда оборачивается сложностями при попытке сделать практически каждый следующий шаг, как только мы туда доберёмся. Вкупе с меньшими потенциальными выгодами это означает, что при выборе Луны в качестве следующей цели для пилотируемых полётов у нас оказывается гораздо больше шансов «откатиться» с неё обратно, как уже произошло ранее. И, к сожалению, за прошедшие полвека в этом плане практически ничего не поменялось, чтобы могло внушить оптимизм в этот раз.
Попытки же чиновников NASA оправдания полётов на Луну по программе «Артемида» отработкой технологий для Марса, на деле не выдерживают никакой критики. Так как, во-первых, всё отправляемое в космос оборудование всё равно должно проходить отработку на Земле, а, во-вторых, условия на Луне столь сильно отличаются в худшую сторону, что это приведёт к бессмысленному усложнению и удорожанию и без того не дешёвого оборудования для Марса. Вкупе с тем, что добавление Луны удорожает весь проект в целом и оттягивает на годы выполнение главной цели — высадку людей на «красной планете» — это резко снижает шансы реализации подобной программы (а обещания остаться на Луне на постоянно и вовсе означают перманентное оттягивание от Марса львиной доли финансирования, сводя эти шансы к нулю). Фактически NASA уже несколько раз проходила через подобные отмены проектов начиная с 90-х годов, и весьма печально, что 30-летняя история так ничему их и не научила.
Всем нам — популяризаторам и просто поклонникам космонавтики — хотелось бы видеть гигантские базы, работающие на Луне, Марсе и даже Титане, во благо науки и всего человечества в целом. Но реальность такова, что человечество пока не готово тратить сколь-либо существенные суммы на этом поприще: все государственные расходы на космонавтику составляют около 0,05% мирового ВВП, а на коммерческую космонавтику приходится лишь в 3 раза больше. И в такой ситуации у нас с трудом может хватить средств даже на освоение одного небесного тела, не говоря уже о нескольких. Поэтому выбрать следующую цель нам нужно с большим умом, чтобы не потерять из-за неправильного выбора очередную половину века.